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"As the matter becomes clear, one tends to forget the difficulties and the mystery which sur-
round the problem in the beginning. What once was strange becomes first evident and then natural!
The problem ceases to be a problem; it fades into nothing and disappears in the night of the past."

V. Kourganoff
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NOMENCLATURE

a absorptivity
A area, cm2

CP specific heat at constant pressure, cal g -

d layer thickness, cm
Ex radiative energy, cal
Je(T) spectral emission radiance, W cm-3

1 m-I sr-l
k thermal conductivity, cal cm- 1 s- 1 K- 1

Nx spectral radiance, W cm- 2 sr- Am-1

NA bspectral radiance of blackbody, W cm-2 sr-i -m-

Np Number of particles per volume, cm-3
P(El' - Q) phase function
qc heat flow owing to conduction, cal cm- 2 s -
qr heat flow owing to radiation, cal cm-2 s-
rx reflectivity
s length, cm
S energy generation rate per unit volume per unit time, cal cm-3 s 1

T absolute temperature, K
Ax Planck's function at wavelength X, W cm 2 Am-

WxSI spectral emissive flux of a source at wavelength X, W cm-2
Am-

1

a 
ax absorption coefficient, cm-
'xSI scattering coefficient, cm-l
EX spectral emissivity
so azimuth angle
rx transmittivity
X wavelength, am
p density, g cm-3
oSC scattering cross section, cm2

r optical thickness
0 polar angle
Q solid angle around the direction of propagation Q
b direction of propagation
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RADIATIVE HEAT TRANSFER AND SELECTIVE EMISSION IN
PLANAR SLAB COATINGS ON HOT EMISSIVE SUBSTRATES

INTRODUCTION

This study determines the theoretical conditions necessary for selective emission of infrared (IR)
radiation from a smooth planar coating in thermal contact with a hot substrate. The standard for ther-
mal radiation output is the blackbody, which absorbs and emits more thermal energy, either total or in
an arbitrary spectral interval, than any other type of source at the same temperature. The spectral
distribution curve of a blackbody provides the limiting envelope for the other type of radiators. The
figure of merit as to how a real source compares to a blackbody is known as the emissivity ex and is
defined by

wxource
ex = (1)

where WXUrCe denotes the spectral emissive flux (W cm-2 m -1) of the source at wavelength X and
Wg denotes the spectral blackbody emissive flux that is given by the Planck equation [1]

_ Cl 1
WX (T) -= C2 /XT1 (2)

where

h = (6.6256 i 0.0005) x 10-34 W s2 is Planck's constant,
T is absolute temperature, K,
c = (2.997925 + 0.000003) x 10 10 cm s- 1 is the velocity of light,
cl = 2irhc2 = (3.7415 fi: 0.0003) x 104 W Cm-2 Am4 is the first radiation constant,
C2 = ch/k = (1.43879 : 0.00019) x 104 nmK is the second radiation constant,
kb = (1.38054 k 0.00018) x 10-23 Ws K-l is Boltzmann's constant, and
X is the wavelength, j&m.

From Eq. (1), three classes of sources can be distinguished by the spectral emissivity

* blackbody ex equals 1,

* graybody ex is a constant less than 1, and

* selective emitter eC, a variable dependent on X.

Manuscript approved April 23, 1987.
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LAFEMINA AND LADOUCEUR

Figure 1 shows the comparison between these three types of radiators. The spectral blackbody radi-

ance, Ng(T) (Wcm-2 sr-' tm-1 ) is related to Wg(T) by

wb(T) = 2ir I N
Wb(T)S = N' (T) ILd dp = 7rNX(T),

~,=0 1,t0 

where ,t = cos 0; 0 is the polar angle, and (o is the azimuthal angle in spherical coordinates.

(3)

BLACKBODY
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Fig. 1 - Spectral emissivity and spectral radiance
of three types of radiators
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NRL REPORT 9073

A quantitative model to predict the IR output from isothermal coatings in contact with various
substrates can be formulated from the solution of the radiative transfer equation. The radiative
transfer equation is a first-order differential equation that governs the spatial distribution of the spec-
tral radiance in an absorbing and emitting medium. The radiative transfer equation is well known to

the heat-transfer engineer and the astrophysicist. However, in most engineering applications the net

flux and temperature distribution within the system is of primary interest. A common engineering
approximation is to treat the medium as a graybody and compute the net radiative flux and tempera-
ture distribution under this assumption. There has been very little formal analysis of spectral emis-
sion in such systems.

In astrophysics, it is recognized that the absorption coefficient of a stellar atmosphere varies not
only with radial position but also with wavelength. Nevertheless, many of the theoretical analyses of
astrophysical observations define a mean absorption coefficient and treat the stellar atmosphere as a
graybody for mathematical simplicity. Since our concern is with spectral emission, the analysis for-
mulated here must avoid the graybody approximation. In the next section a formal solution for the
spectral IR output of an isothermal composite slab is obtained from the radiative transfer equation.

To make the analysis mathematically tractable we introduce a number of assumptions. The
materials of the composite slab are considered homogeneous so that the attenuation of radiation by
scattering can be neglected compared to absorption. In addition, the materials are considered isotro-
pic so that the medium can be characterized by a single, uniform index of refraction. Local thermo-
dynamic equilibrium (LTE) is assumed to exist throughout the medium so that Kirchhoff' s and
Planck's laws are valid. The formal solution obtained in the next section is used to investigate the
effects of various input parameters on the IR output of the composite slab. The effects of coating
thickness, coating absorption coefficient, substrate emissivity, and temperature are analyzed.

ENERGY TRANSFER EQUATIONS

The general equations for a conducting and radiating medium can be derived by making an
energy balance on an arbitrary volume of matter. This energy balance equates the time rate of change
of the energy stored in the volume element to the sum of the net heat flow into the element resulting
from conduction, radiation, and heat generation within the volume element. The resulting equation
for the temperature distribution is

PCp aT(F, t) = V * ({c + 4r) + S(r, t), (4)
at

with

qc= - k V T(F, t) (Fourier Law), (5a)

and

4qr = S'o [s 4 T b NX(7, t)dg ]dX (5b)

where

p is the density,
cp is the specific heat at constant pressure,
k is the thermal conductivity, and
S is the energy generation rate per unit volume per unit time.

3



LAFEMINA AND LADOUCEUR

Equation (4) is a partial differential equation for temperature T. Once the temperature distribu-
tion is known, the heat transferred by conduction is readily determined from Eq. (5a). Since the radi-
ation term in Eq. (5b) depends not only on the local temperature but also on the entire surrounding
radiation field, the energy equation is an integrodifferential equation for the temperature distribution
in the medium. The divergence of the radiative flux represents the net rate of gain for radiant energy
per unit volume at any point P (i) resulting from the excess of absorbed over emitted radiation. The
expressions for the radiative flux and its divergence are discussed below.

Radiation Transport Equations

Consider the radiative transfer in a plane layer of material, as shown in Fig. 2, in which the
temperature depends only on the coordinate in the z direction. The medium is of infinite extent in x
and y directions, and the boundary conditions are such that the temperature and radiation fields do not
depend on x and y. The layer is an absorbing, emitting, and scattering planar slab of thickness d
that is in contact with a hot substrate that is maintained at a uniform temperature T, For this planar
system with uniform boundary conditions, the radiative heat transfer is one-dimensional and depends
on the depth only. The transfer equation (derived in Appendix A) becomes

dNx(s, Q, t) AtS

ds + (a> + cX) Ax (s, Q. t) = f(s, T) + 4 la, 4 P(b' *) Nx(s, 6')dfl', (6)

where the spectral radiance due to emission is fe(s, T).

z

d =~~~~~~~~~~~~

=L0 Jj=O X --- 

COATING

HOT SUBSTRATE 

Fig. 2 - Physical model and nomenclature
for a planar slab coating on a hot substrate

In Eq. (6) a0 and acs are the spectral absorption and scattering coefficients, respectively, in units of
cm t , s is the length measured along an arbitrary direction fQ, t is time, 0 is the polar angle as dep-
icted in Fig. 2, ( is the solid angle around the direction of propagation Q, and P(Q' * Q) is the phase
function. Equation (6) assumes that the participating medium is isotropic and homogeneous, other-
wise a' and ajt would be functions of direction and position. Since z = s cos 0, the directional
derivative can be expressed in terms of the derivatives with respect to the space coordinate z as

d a (7)
ds az

4
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where it is the cosine of the angle 0 between the direction 0 of the beam and the z axis. It is con-
venient to define the optical thickness Tx: e:

TX = 1j (a a + a X) dr'. (8) r-

The independent variable s in Eq. (6) can be rewritten in terms of ix.

MODEL I: Nonscattering System at Uniform Temperature Ts

For a homogeneous, isotropic coating that absorbs and emits radiation but does not scatter it
(ax = 0), Eq. (8) reduces to TX = a)az and the radiative transfer equation is written

aNx(Tx A, A, Ao) T(Tx, T)
faTx + NX(rX' 1X' z) = a(9a)

with the boundary condition at TX = 0

NX(0, A) = e s)N (T ), (9b)

where eX is the substrate emissivity and the reflected energy from interfaces at T
X = 0 and TX = T7Xd

are assumed here to the negligible. For azimuthal symmetry, the radiance is independent of s° and
Eq. (9a) becomes

a~x, A)+ Nx(TrX A)) = a ° < TX C iXd- (10)
aix~~~~~a

The spectral radiance Nx(rx, it) in the absorbing and emitting coating layer is determined from the
solution of Eq. (10). Before arriving at the formal solution it is desirable to divide Nx(Tx, u) into two
contributions: the radiance directed in the positive direction (j > 0) denoted by NX+ (Tx, A); and the
radiance directed in the negative direction (u < 0) denoted by N- (TX, A). Equation (10) is then
separated into N,+ (Tx, A) and N)7 (Tx, /t) components, and the resulting equations along with the asso-
ciated boundary conditions are given as

aNx(TX, IL) + Nfx ) (rx' T) A > O. (lla)
+ ix(Tit =!>0 (a

with

N+ (0, A) = eNb (Ts), (lb)

and

aN - (rx, ut) YX(ix, T)
I X +Nx i/) = a< C 0, (12a)

with

N~ (7d, Ill) = r2 xNX (TXd, /J) (12b)

5



LAFEMINA AND LADOUCEUR

where r2x denotes the specular reflectivity off the boundary surface TX = rxd. The reflectivity, r2x,
can be computed for a smooth surface from the Fresnel equations. Using an integrating factor and
then combining the two terms on the left-hand side of Eq. (I la) into a total differential yields

d N+exp (TrxLA)]_i
[ dx ( x -=t~ I >(Tx, T) exp (Tx/,L) A > 0. (13a)

In a similar manner, Eq. (12a) becomes

d [N-j exp (Tx/,IL)] I 
dX -= - J'(Tx, T) exp (Tx/IL) A < 0. (13b)

Integration of both sides of Eqs. (13a) and (13b) with respect to r>, and rearranging terms using the
boundary conditions gives

exp (--Tx/IL) T
N + (-TX, i) = N, (0, A) exp (-Tx/IL) + a f2 e (Tr, T) exp (Tr>/yI) d7-, (14a)

and

N>x (Xr, At) = Nx (Txd, At) exp [(Txd - X)/] + TV (Tr T) exp (TrX//I) dr>,. (14b)

Equations (14a) and (14b) are formal solutions for the spectral radiance in the positive and nega-
tive z directions, respectively. In general the temperature T is a function of Tx. However, if the
coating is thin, temperature gradients can be neglected and by using the isothermal assumption, T
may be approximated by T,. With this approximation Je(TX, T,) is a constant and can be factored
from inside the integral sign and Eqs. (14a) and (14b) are rewritten as

Nx, (ix, 1) = N+ (0, A) exp (- Tx/I) + S ) exp [(T>x - Tx)/I)] dTx> (15a)

Nx (TX, it) = Nx (Txd, it) exp [ (rxd - Tx)/l] - , ;, ' exp [(rx - -To IA drx (15b)a ST~ X[(>-Tx/Ldr 1b

or, by replacing A by -it, Eq. (15b) becomes

N, (Tx, -i) = Nx (Txd, -it) exp [(rxd - Tx)/Il] + , iT exp [(Txr- T-)/iI d T-. (16)

Assuming that the medium is in local thermodynamic equilibrium and that Kirchhoff's law is valid,
the spectral radiance resulting from emission is given by

( ) = cX4Ng (Xs). (17)

6
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To determine the net spectral radiance at the optical thickness Tx, Eqs. (15a) and (16) must be com- >

bined as

Nne'(T, i) = N,+(ix, it) - Nj (rx, A). (18) r

Integrating Eqs. (15a) and (16) with respect to ix' and using the thermodynamic equilibrium condition
from Eq. (17) gives

Nx (Tx, i) = Nx (0, It) exp (-Tx/it) + Nb(Ts) [1 - exp (-Tx/IL)]. (19a)

N>7 (fx, -ia) = N- (ds, -it) exp [(fiX - i)/rt] -Nb,(T 3) [exp t(iX- - )/i- 1]. (19b)

By using the boundary conditions for N + (0, i) and Nx- (iXd, -it) from Eqs. (1 lb) and (12b) the
above equations become

N + (7XE, A) = cxNg (Ti) exp (-Tx/it) + N (T) [1 - exp (->,)//L] (20a)

N>7(ix, -it) = r2x[eNNg(Ts) exp (-ix/it) + Nb(Ts) (1 - exp (-iM/i))] exp [(TX - id)/i]

-N'(T 3)[exp [(TX - r4)/iI - 1]. (20b)

Substitution of Eqs. (20a) and (20b) into Eq. 18 gives

Nx t(i, it) = exsNg(T3) exp (-Tx/I) + Ng(T ) [1 - exp (-Tx/it)]

- r2x [eXsNg(Ts) exp (-ixd/i) + N (Ts) (1 - exp (-ix/Xit))] exp [(7X - TrXd)/F]

+ NX(Ts) [exp {(TX - TXd)/it - 1]- (21)

The spectral radiance observed at the surface of the slab at normal incidence, i.e., 0 = 0° (a = 1) is
determined by setting Tx = Txd in Eq. (21) that then reduces to

NXnet(Td) = Nb(Ts)[1 - r2x] [eq exp (-iad) + 1 exp (-ixd)]. (22)

Equation (22) is the central result of our analysis. This is the general solution for the radiance
emitted from an absorbing, emitting, nonscattering planar slab coating of thickness d on a hot sub-
strate of emissivity e-. The physical significance of the various terms in Eq. (22) are as follows: The
first term on the right-hand side is the contribution from the hot substrate attenuated by the optical
thickness Txd; the second term is the contribution to the radiance from the emission along the path
rx = 0 to T = rxd; the factor (1 - r2x) accounts for the specular reflectivity at the boundary surface
between the coating and the outside medium. Consideration shall now be given to some special cases
of the input parameters.

7



LAFEMINA AND LADOUCEUR

Case I: Substrate Is a Blackbody (eg, = 1 and r2a = 0).

Equation (22) reduces to

N ei(ixd) = Ng(T) [1] - Nb(T) (23)

This leads to Conclusion I:

If a coating of a selective emitter is applied to a blackbody substrate and forms a non-
scattering, absorbing, and emitting layer in thermodynamic equilibrium with the sub-
strate, then the composite system can only emit as a BLACKBODY.

Case II: Role of Optical Thickness

The optical thickness TXd was defined by Eq. (8) and related the absorption coefficient ax and

the geometric thickness d of the layer. In an optically thick regime, the quantity T1> approaches

infinity. The exponential terms in Eq. (22) approach zero and when r2x = 0, this equation reduces to

N~net(T~d) = Nb(T') [1] = Nb(T). (24)

This result leads to Conclusion II:

In an optically thick limit the composite system described by Fig. 2 can emit
only qs a BLACKBODY.

This conclusion is independent of the nature of the substrate and the selective emission charac-
teristics of the coating. It is also valid for emission from hot gases such as those found in IR flares
[2]. The addition of selective emitters to a hot flare plume cannot change the spectral IR output if the
plume is optically thick. Figure 3 shows an example of how the optical thickness effects the IR radi-
ance of sheets of ordinary window glass of various thicknesses at 1000'C. Note that the spectral
emissive power approaches that of a blackbody as the sheet thickness x goes to infinity for nonzero
spectral absorption coefficients. The reflectivity factor in Eq. (22) causes the emissivity to differ
from 1.0 as the glass thickness approaches infinity.

When cae = 0, the optical thickness TrX is 0, the exponential terms approach 1 in Eq. (22), and
when r2X = 0, Eq. (22) reduces to

N'ei(Txd) = NX> (Ts)Ex. (25)

Under these circumstances the spectral radiance is determined entirely by the substrate emissivity and
temperature.

The spectral transmissivity rx measured in the direction of propagation is defined as

e- = em = e-axZ. (26)

8
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The conservation of energy within the coating is expressed by

ax + rF + rx = 1, (27)

where ax is the spectral absorptivity and rx is the spectral reflectivity.

In the present analysis, the spectral reflectivity is assumed to be negligible: i.e., rx s 0 and
Kirchhoff's law is assumed to be applicable, which implies that ax = ex. Equation (27) then can be
written in terms of the emissivity of the coating layer of thickness d as

a= 1-e -d =I-exp (-xd) = e>. (28)

Substituting Eq. (28) into Eq. (22) yields the general solution

Ne t(Trd) = N (7)[e exp (-i~) + ex] (29)

In the optically thin regime, i>d approaches 0, and Eq. (29) is approximated by

NXICt(rxd) = Nb(T 8 ) [eC + ex - EeEl, (30)

where e' is the emissivity of the coating. This equation expresses the net spectral radiance in terms
of measurable or assumed spectral emissivities.

Case III: Opaque Substrate of Negligible Emissivity (ex < < 1)

If the substrate emissivity E' in Eq. (29) is small, the intensity equation reduces to the approxi-
mate form

N t(r7d) = NX(Ts) [e>C]. (31)

Figure 4 shows the measured selective emission of a finite thickness of silicon dioxide (e' 0).
Equation (31) reveals that if a selective emitter is applied to a substrate of much lower spectral emis-
sivity (e.g., a metal), the radiated intensity from the composite system is dominated by the emissivity
of the coating layer.

This leads to Conclusion m:
If a coating of a selective emitter is applied to a metallic (low emissivity, i.e.,
IR blocker) substrate and forms a nonscattering, absorbing, emitting layer in
thermodynamic equilibrium with the substrate, the spectral radiance of the
composite system will be dominated by the EMISSIVE PROPERTIES OF
THE COATING.

As an example of this case, consider a hot steel substrate at 1273 K (10000 C) coated with a
layer of silicon dioxide in thermal equilibrium. Figure 5 shows the normal spectral emissivity for
these materials at the above temperature. The radiance for a blackbody and the steel and silicon diox-
ide composite in the 2 to 15-jim region at this temperature can be compared by using Eq. (30). Fig-
ure 6 shows the results, which demonstrate the selective IR emission for this system.

10
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Appendix A

DERIVATION OF THE RADIATIVE TRANSFER EQUATION

The propagation of radiation at any point in a medium cannot be represented by a single vector
as in the case of heat flow by conduction. To specify the radiation incident at a given point within
the medium, one must know the radiation from all -directions because radiation beams are independent
of one another. The amount of radiation energy transmitted by the ray in any given direction per unit
time is the spectral radiance. To define the quantity we consider an element of surface area dA
located about the space coordinate Y as illustrated in Fig. Al. Let h be a normal unit-direction vector
to dA and let dEX denote the amount of radiative energy in the wavelength interval X to X + dX, con-
fined to an element of solid angle d O around the direction of propagation Q streaming through the ele-
mental surface dA during the time interval between t and t + dt. Let 0 be the polar angle between
h and the direction of propagation Q. The spectral radiance Nx is defined as

dExNX =E (Al)
dA cos 0 dt dfQ dX

A
n

dA--

0

Fig. Al - Symbols for the
definition of radiance

The spectral radiance in a given direction in a nonattenuating and nonemitting medium with constant
properties is independent of position along that direction. This invariance of spectral radiance when
no attenuation or emission is present provides a convenient way of specifying the magnitude of any
attenuation or emission as these effects are given directly by the change in radiance with distance
traveled through the medium. In the engineering community, the quantity defined by Eq. (Al) is
often called the spectral intensity.

Radiation traveling along a path is attenuated by absorption and scattering and enhanced by
emission (both spontaneous and induced) and radiation scattered in the path direction from other
directions within the medium. The processes of absorption, emission, and scattering can be written as
an energy balance over a small volume element of the medium. Consider an elementary cylinder, the
axis of which is directed along a given direction of propagation Q (cos 0 = 1). Let the area of the
cylinder's base be dA, and let the cylinder's height be ds. The spectral radiance where the ray enters
the cylinder is denoted by Nx, and the spectral radiance leaving the cylinder is denoted by Nx + dNx.
If the medium within the cylinder interacts with the radiation, the net change in the spectral radiance
is dNX. By equation (Al), the quantity

13
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dNX dA dt dQ dX, (A2)

represents the difference in the radiative energy crossing the surface dA at s + ds and s in the time
interval dt about t and in the wavelength interval dX about X, and contained in an element of solid
angle dfl about the direction Q. Let Gx represent the net gain of radiative energy by the beam in the
volume element dAds per unit volume, per unit time about t, per unit wavelength about X, and per
unit solid angle about the direction Q. Then the quantity

GxdAdtdgdXds, (A3)

represents the net gain of radiative energy by the beam contained in an element of solid angle dO
about the direction Q), in the time interval dt, in the wavelength interval dX, and in the cylindrical
volume element dAds. By equating the quantities (A2) and (A3), we obtain

dNx
ds = GX(

The spatial derivative in Eq. (A4) assumes that the observer is moving with the radiation beam at a
speed c (Lagrangian frame). The distance ds traversed by the beam in time dt is given by

ds = cdt. (AM)

To compute the derivative with respect to space in a fixed coordinate system (Eulerian frame), one
must use the substantial derivative and Eq. (A4) becomes

y at + - VNx = Gx. (A6)

If the direction of propagation is along the path s, Eq. (A6) can be written as

1 aNx aNx G (A7)
C at as

In most applications, the first term in this equation can be neglected because of the large magnitude of
the speed of propagation c. We now derive explicit expressions for the various components of Gx:

Gx, = GaX + GXS - G)s + G E, (A8)

where Gx is absorption, G'S is out-scattering, G(s is in-scattering, and GEM is emission.

Consider radiation of radiance N(s, b) traveling in an absorbing, emitting, and scattering
medium. As the radiation passes through the cylindrical volume element, it is attenuated by absorp-
tion. The decrease in energy per unit volume, per unit time about t, per unit wavelength about X,
and per unit solid angle about the direction 0 is given by the phenomenological Bouger-Lambert Law

G= -< a Nx, (A9)

14
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The spectral absorption coefficient oil is a physical property of the medium and has the units of
reciprocal length. In general, it is a function of temperature, pressure, material composition, and
radiation wavelength. The absorption process considered in Eq. (A9) includes both "true absorption"
and stimulated emission because both processes are proportional to the radiance of the incident radia-
tion. The net absorption of the medium may be positive or negative, depending on whether "true
absorption" or stimulated emission dominates.

The extent of scattering within the medium depends on the number density of scattering particles
(NP) within the medium and the scattering cross section (axc) of an individual scattering particle. The
cross section for scattering is the apparent area that a particle presents to an incident beam insofar as
the particle's ability to deflect radiation from the beam is concerned. The scattering cross section
depends on the particle size, geometry, material composition, radiation wavelength, and polarization.
The decrease in spectral radiance per unit time, volume, solid angle, and wavelength resulting from
the scattering out of the incident beam direction is given by

G'S - axcNpNx = -ctSNx, (A10)

where ax denotes the spectral scattering coefficient. The scattering coefficient can be regarded as the
reciprocal of the mean free path that the radiation traverses before being scattered.

Since radiation is scattered from paths adjacent to the volume element under consideration, the
scattering process can also enhance the spectral radiance along the distance ds. To calculate the
enhancement from this incoming scattering, the directional distribution of the scattered radiation is
required. This distribution is described by an angularly dependent phase function Px,(b' [2). Physi-
cally, the phase function is interpreted as the scattered radiance in a particular direction divided by the
radiance that would be scattered in that direction if the scattering were isotropic. If the scattering
particles in the medium are modeled as isotropic spheres and the medium has no preferential direction
for scattering, then the phase function depends only on the angle between the incident direction [ and

the scattered direction [2'. Mathematically, the phase function can be related to a probability density.
The quantity defined by

4±Px(fl* Q) do (All)

represents the probability that an incident beam of radiation traveling in direction Q will be scattered
into an element of solid angle d12' about the direction §'. The scattering of the incident radiation,
Nx&F, 0), by the medium per unit time, per unit volume, per unit wavelength into an element of solid
angle dO' about the direction (2' is given by

c4Nx(s, fi) dO 1 Px(' * 0) dQ'. (A12)

In general, the scattered radiation will be incident on the volume element from all directions.
The integration of Eq. (A12) over all solid angles of incidence yields

Gs= 4 iPx(§' [) Nx(s, [) dO, (A13)

which represents the scattering of radiation incident on the volume element from all directions into the
solid angle dQ' about the direction O' per unit time, per unit volume, and per unit wavelength.

15

0



LAFEMINA AND LADOUCEUR

If the medium is in local thermodynamic equilibrium, spontaneous emission along path length ds
enhances the radiance in the s direction by

GX =X aXf (A14)

where Nx is Planck's function. Equation (A 14) is a mathematical statement of Kirchhoff's law. The
assumption of local thermodynamic equilibrium simply means that the matter contained in the cylin-
drical volume is in thermodynamic equilibrium with itself but not necessarily with the radiation field
[Al].

Given these explicit expressions for the components of Gx, the radiative transfer equation
immediately follows from Eqs. (A4) and (A8):

dNX 
- ds = -(a + (c )Nx + .5 PX(f' *) NX(s, O) d0 + CaaNb (A15)

or

dNx(s + (ax' + ax) Nx(s , O, t) = acNx (sS T) + x x P, (Q' O)Nx(s, fX') dfl'. (A16)

For further details see Ref. A2.
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Appendix B

AVERAGE (HEMISPHERICAL) SPECTRAL RADIANCE CALCULATION

The average spectral radiance for azimuthally symmetric radiation is defined as

27r 1-x() 50 5 I5dp d (Bd)

which in the present case of radiances in the forward and backward directions becomes

G ( ) So Nx (,x, A) du 5- Nx (TrX, A) du B2
Gx(,rx) = 0 0r ~d~_~Nj~xI~p(B2)

50 du E-l du

Substitution of Eq. (15a), and (16) into Eq. (B2) yields the formal solution for the spectral radiance as

G(rx) = 5 Nx(0, p) exp (-&Tx/u) duA

1 fe(~)r

+ 5 5 exp [(TX - TX)Il/] dix, da

- 5 N (Txd , -u) exp [(Tx - Txd)/1]d A (B3)

+ 5 .,(T) 5T exp [(TrAx - -T X dA.

By using the boundary conditions for Nx+ (0 , u), and N- (Txd, it) from Eqs. (1 lb) and (12b) and

the thermodynamic equilibrium condition from Eq. (17) the above equation becomes

Gx (ix) = e' N (Ts) S0 exp (-Tx/U) dua

+ Nx(Ts) 57 5 - exp [(TX - 7)1iA] drx dji

- so r2X>eXSNX(Ts) exp [+TXd//l] + Nx(Ts) f1 - exp (T>dIp)]] [exp [(rx - TXd)/IA]] dA

+ Nx(Ts) 5 5 - exp [(tx - dr)'tt] d A> dtt. (B4)
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By using the exponential integral function defined as

E. (z) = | n -2e - /-O d ,

Eq. (B4) is written as

GX(TX) = eSNg(Ts)E2(7x) + Nb 5o El (Tx - T) dT'

- r2xNt(T,)[eCXE2(ix) + E2(rXd - T>)+ E2(2,Xd - TX)]

+ N )(T3 ), E1(T - TX) dT'.

The two integral terms in Eq.
exponential integral as

(B6) can be reduced to a simpler form by using an identity of the

N X(T) [ 5 E 1(iX - TX) dTX + 54 E 1(7X 7X) drTx
0 )I

= NX(TS)[2 - E2(TX) - E2(Trd -TO]- (B7)

Substitution of Eq. (B7) into Eq. (B6) gives the average spectral radiance as

GX(TX) = NX(T ) IeE 2(rx) + 2 - E2(TX)

- E 2(TXd - Tr) - r2x[ex E2(Tx)

+ E 2(Trd - TX) - E 2(2Tr d TX)II.- (B8)

The spectral radiance observed at the surface of the slab is determined by setting Tx = 7Xd in
Eq. (B8), which then becomes

or

(B9a)

(B9b)

Under these circumstances the spectral radiance is determined entirely by the substrate emis-
sivity and temperature. When TX is small, the exponential function E 2(rx) can be expanded into a
series expansion approximation as

18

(B5)

GX(Txd) = NX(T ) [eXE2(T),d) + 1 - E2(TXd) - r 2X[eXE 2 (TXd) + 1 -E2(TXd)]]

G X(Txd) = NX(T,) [I - r2J [1 + E 2 (TM) (e-X - 1)].

I

I

I
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E2(Tx) = 1 - TX + 'YTX + 0(T ), (BIO)

where y = 0.577216 (Euler's constant), and 0(T\2) are higher order terms.

Substitution of Eq. (B10) into Eq. (B9) yields

GX(T d) - Nb(Ts) (1 - r2>] [1 + (1 - Tx + YTx) (eq - 1)], (Bl)

which can be reduced to

GX(Txd) = NX(Ts) [1 - r2XI [eX(1 - "Y'TX) + Y'TX], (B12)

where y' = 1 - -Y.

By using rx = e' from Eq. (29), the average spectral radiance in the above equation becomes

GX(TXd,) = Nx(Ts) [1-rx] [ex(1-7'ex9 + 'er, (B13)

or

GX(TXd) = Nb(Ts) [1 -r2 ] [E, + (XC- ej fa, (B14)

where TX = -y'feX.

Upon comparison of net radiance normal to the surface of the slab (Eq. 30) and the average
radiance over the hemisphere (Eq. B14) with r2X = 0, it is seen that the effect of averaging comes in
by replacing the emissivity of the coating layer by hemispherical emissivity.
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